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- ABSTRACT

In stochastic scheduling and optimal maintenance problems that have
been considered in the literature, the optimization criterion used has
often been equivalent to minimizing the expected first passage times to a
set of states. A typical method used in establishing the optimality of a
certain policy is the method of successive approximations on the
appropriate dynamic programming functional equations. As an
intermediate result, this technique often involves the optimality of the
pertinent policy for all finite horizon versions of the problem. In this
paper we characterize stochasatically optimal policies as policies that
posess a similar property, i.e. they are optimal in expectation for all
members of a sequence of appropriately defined finite horizon problems.
We use this characterization to establish the stochastic optimality of
relevant policies for the optimal repair allocation for a series aystem
problem and for a scheluling problem.

VY

"% P

1. Introduction. In many problems that have been considered in the litera-

ture of stochastic acheduling and maintenance, the optimization criterion

LAE UL Y
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employed has often been to minimize the expected first passage times to a set

of "desirable” states. A typical method used in establishing the optimality of a

l'l-l'l

certain policy is the method of successive approximations on the appropriate

[}

dynamic programming functional equations. As an intermediate result, this

technique often involves the optimality of the pertinent policy for all finite

horizon versions of the problem.

2This research was partially supported by the NSF under Grant NO.
DMS-84-05413 and the AFOSR under contract AFOSR 87-0072
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In this paper we show that the stochastic optimality of a policy can be
obtained in a similar manner by establishing that the policy is optimal for a
class of appropriately defined finite horizon problems. Furthermore this
approach can be used to establish that a stochastically optimal policy does not
exist. It is known that stochastic ooptimality is the strongest optimization
criterion since it implies optimality under both the expected and the
discounted first passage time criteria.

In this paper we examine two cases of application of the property above.

We first consider a generalization of the problem of optimal allocationn over
time of a single repairman to failed components of a series system, previously
considered in Katehakis and Derman (1984); see this paper for references on
other work on this problem. Operation in a varying énviroment is considered
and the following assumptions are made. Let N denote the number of
components in the system . Let 8 denote the state of the environment
which is observable and let 6 denote the set of all possible states of the
environment; 6 is assumed to be (for simplicity) finite. Furthermore, we
model the law of motion for the state of the environment by a continuous time
Markov Chain {8(t) , t » 0} with known transition rates (q(8°/8), 8,0 ¢ 8} .
Components may be either in a functioning or in a failed state. To model the
effect of the operating environment on the time to failure of the components,
we assume that when the state of the environment is 8 the failure time of
the ith component is an exponentially distributed random variable with
known rate pi(8) (1 ¢« i ¢« N, 8 € 8 ) . In addition we assume that the
failure time of any component is independent of the state of other components.
The time required to repair component 1 is also an exponentially distributed
random variable the rate A; of which is independent of the state of the

environment. Repaired components are as good as new. [t is assumed that it
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is possible to reassign the repairman among failed components instantaneously.

In this paper it is shown that the policy which always assigns the
repairman to the failed component with the smallest failure rate among the
failed ones (smallest failure rate first or SFR policy} minimizes
stochastically the time the system spends under repair. Hence, it is optimal
with respect to both the maximum availability and the maximum discounted
operation time criteria, irrespective of the values of the repair rates and the
discount rate.

In Katehakis and Derman (1984), the optimality of the SFR policy with
respect to the average system operation time criterion was obtained in the
case of non-varying enviroment. The proof involved establishing that the SFR
policy minimized the expected first passage times to the functioning state; this
was done by showing that the functional equations of the relevant Markovian
decision problem were valid under this policy. The method of proof then was
based on induction on the number of the components. The present proof,
based on propositions 1 and 2 below, although simpler than the original,
establishes optimality under a stronger criterion for a more general model.

We also consider the following stochastic scheduling problem examined by
Van der Heyden (1981); see also Weiss and Pinedo (1982). Jobs arrive
according to a Poisson process with rate r . The processing time of a job is
an exponentially distributed random variable with a parameter that is chosen
upon arrival by sampling from a known distribution F, All random variables
are assumed to be independent. There are p processors and the objective
is to minimize the expected time until all jobs have been completed (also called
the expected makespan). It has been established, in the papers above, that
the policy which always assigns processors to the uncompleted jobs with the

Longest Expected Processing Times (LEPT policy) minimizes the expected
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makespan. We modify Van der Heyden’s work and obtain the stochastic

optimality of the LEPT policy.

2. Characterization of Stochastically Optimal Policies in First Pasaage

Problems.

We first consider the discrete time first passage problem in Markovian
Decision Theory on a (for simplicity) countable stete space, which is specified
by the following elements.

1. The state space S and the action sets A(s) , s € S,

2. The transition law: {p(s-/s,a) , s’,s € S, a € A(s)},

3. A subset Sg of S,

4. An initial state sg .

We will denote this problem by ([l§g) . A policy n generates a stochastic
process {Xp(k) , k = 1,2,...] . The first passage time from a state s to Sp
will be denoted by Tp(s) .

A policy n0 is called stochastically optimal if it satisfies
st
(1) T of(s) 6§ Tr(s) for all alternative policies m , s € S
n
where, given two random variables Y} , Yo , define:

st
(2} Yy ¢ Yo if and only if P(Y] ¢ y) a P(Y2 ¢ y)

The method we use to show the stochastic optimality of a policy and to
discover whether such a policy exists is based on establishing the optimality
of the policy in the following class of finite horizon problems.

We define the finite horizon problem (llIy) , n » 1 , as follows.

1. State space S, = {‘s:m) , s €S, m=0,1,...,n}
2. Action sets: A{s:m) = Ais') m=1,....n , Ats:0) = @
4
Ve .:. '..‘_\J:...'.._:.._ ;‘.-\.-".-.\.'\.-:‘.-:‘/ ;.._:.":.‘,:.'_'.__:.-_:...:‘._*.J'. '.\'_'.__".__:.__'. ._:.',:.__:.','_.'.'.._‘:.'.’:...‘-.,“-‘;..-_'.,}__\
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3. Transition law:

,

pis‘/s,a) if m" =wm-1 and s, s” € S\S0
(3) pis":m /s;m),a) = 1 if m" =m-1 and s, s° € S
0 otherwise .

¢ Reward structure:

1 if s €S9 and @ =0
(4) ris:m: =
0 otherwise .

Every policy in the process ([I) induces a policy refering to the family
of processes (([lp) , n 3 1} which does not depend on n and vise versa.
Thus, there is a 1 - 1 correspondence between policies associated with the
problem ([1) and policies refering to the family of problems (([l)} which do
not depend on n .

The following can be easily established.

Proposition 1. A policy is stochastically optimal in (1) if and only if it is

optimal in () for all n 2 1.

Proof: It suffices to notice that in n steps the process either terminates
in the set of states ({(s;0) : 8 € Sg) with reward 1 or to some
other state with reward 0 . Thus, the total expected reward in ([I5:

coresponding to any policy mn defined in ({I' and initial state .s,n' 1is

P'Tpis) ¢ nj

For a continuous time first passage problem the approach described above
is applicable if we can use the device of uniformization; see Jensen(1953),
Veinott(1969) and Lipman(1975). To be precise, the continuous time problem,
which is denoted by ([lc) , i3 specified by:

-

1. The state space S and the action sets A(s) , s € S,

o o ~ e .
R O L T PR A
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:: 2. The transition law, which is given in terms of transition rates
LN
LA
{v(s-/s,a) , 8 ,s € S, ace€ A(s)} ,
.
q
N 3. A subset Sp of S,
: 4. An initial state sg .
‘a
A Let us define
Cal
‘I'
_j ‘5) wvis,a) = Zs,v's’/s.a)
N
"] The device of uniformization essentially involves to notice that if the
‘;: transition rates are bounded and if we consider v @ v(s,a) 4 s, a, then,
\I
:: by counting (dummy) transitions back to state s at a rate (v - v(s,a)) the
sojourn times in all states are equalized, i.e.,, they are i.i.d. exponentially
distributed random variables with rate v . Thus, a discrete first passage
N problem is defined on the same state and action spaces with transition
- probabilities given by:
" v(s“/s,a)/v if s = s~
- (6) p(s” ‘s,a) = [ ) ) )
- (v —vis'/s,a))/v if s = s°
- Let Tg(s) denote the first passage time from state s to the subset Sg
. for the original continuous time process and let Tg(s) denote the first
paasage time from s to Sg for the discrete time process above (ncte that
:.': without any loss in generality we can assume that v = 1 and thus regard
™ Tn(s) as a random variable counting the number of transitions to Sg) .
) We formally state the following,
A Proposition 2. A policy n0 is stochastically optimal for the continuous time
Y
- problem if and only if the actions prescribed by n0 constitute a
;. stochastically optimal policy in the discrete time problem.
" Proof: It is known, Keilson(1979), that the uniformized process is
-~
'
6
)
o
d
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probabilistically identical to the original process: thus we can assume that

Tﬁ(s) refers to the later. Let Y), Y2,... denote the sequence of i.i.d.
sojourn times in the continuous time uniformized process. Then,
T

(7T Tﬁ(s‘: =
k

{s)

Y
1k

[T e = K

and the proof can be completed easily: see Ross (1983 p. 255)

Proposition 2 enables us to study continuous time problems by applying

proposition 1 to the discrete time problem obtained via uniformization.

3. Optimal Repair of a Series System.

At any point in time the state of the system is specified by a vector
X = (Xi,..,XN) with the convention that xij = 1 or 0 according to whether the
ith component is functioning or not and a scalar 8 which denotes the state
of the environment. Thus, S = (0,1)Nx8 is the set of all possible states and
W = ((1,8) , 8 € B) is the set of all functioning states for the system.

Given a state (x,8) € S, we define:

Co(x,8) {i: % =0} ,

C1(x,9)

1},

{i: %3
(81,%,8) = ((X]s+00yXi~116,Xj+)s---.XN):8) , for § =0 or 1,

alx:9)

minfp;(8) : i € Co(x:8)} ,

pix; 8> X‘;inui(e) ,
q(9) = Ze’ q(87/8)

Assumption A: we assume that if j € i then uJ.<6‘ % ui'6> , 18 ¢€86.

This in particular implies that a x,8' = a(x: ¥ (x,9 ' € S.

~3
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When the system is in state (x,8) the set of all possible actions can be

identified with the set of the failed components with the interpretation that
action i € Cgfx:8) means that the repairman is assigned to component i

When the system is in state (x:8:m! and action i € C.’x:9) 1is chosen the

0
following transitions are possible
i) to state (li.x;e\ , with rate ki R
i1} to state (Ok,xza) , with rate ukfei , K€ Cl(x:6~

iii) to state (x;8°) , with rate q(8°/3: , 8, 8" € 6 .

The discrete time decision problem induced by the above is defined on
the same state space with the following transition law. When the system is in
state (x:8:m; and action i € Co(x:67 is chosen the following transitions
are possible.

i) to state (li,x;e) , with probability Ai /v,
ii) to state (Ok,xze) , with probability pk(a‘ /v , k € Cl(xze) ,
iii) to state (x:9°) , with probability qi3°/8'/v , 8, 9" € 8 ,

iv) to state (x:8) , with probability (v - pix:8) - Ai - qid’} /v,

3.1 Construction of a family of Markovian Decision Problems. We construct a

family of discrete time, finite horizon markovian decision models as follows.
For any n positive integer construct problem (I} by defining:

1. States: (x;0;m) , x;8) € 8, m =20,1,...,n

2. Action sets: A{x:;0:m) = Co(x;e‘

3. System dynamics: when the system is in state (x:8:m) and action
1€ CO(x:e) is chosen the following transitions are possible

i) to state (li.x:G:m—l) , with probability ki SV,

ii' to state (Ok.x:ezm—l) , wWith probability uk(3) /v , ke, xd

iii) to state (x:9’:m-1) , with probability 988 v , 8 ,8 ¢ 86,
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iv) to state (x:9:m-1) , with probability (v - u(x:9> - ki - q(d:" v,
where v 1is any constant greater than the sum of all transition rates.
4. Reward structure:

1 if (x:8) e W andm =0

rix;o9:m) =
0 otherwise .

3.2. The SFR policy is stochastically optimal. Take n and denote by Vix:8:m:

the value of state (x;8;m) in the finite horizon problem ([l . To write

the functional equations for V(x;8;m) , m=1,...,n, we first define

A(x;8;m:;1) = % {{v - ui{x;8) - Ai - q{8)) V/x:8:m1)
AP N ‘an 3 m—
‘\ + AiV(li.x.a,m 1) + Zl xkpk‘e,v(ok,x,a.m 1)
(8°/8 V(x:8:m-1)
* Tgeq A7/OV(xi8"im- 1))

(8) V(x;8:m) = max {A(x;8;m;i)}
ieCo(x;8)

1 if (x;8) ¢ W
(9) V(x:;8:0) =
0 otherwise .

Lemma 3. Let I xi ¢ N - 2, Then under assumption Afor any (x;8) € S

iy j € Colx;8), mal and j ¢ i the following inequalities hold

(100 (A.- X, ) V(ix;8;m) a A V(1,,x;8;m) - A.V(1l.,x;8:m)
1 J i 1 J J

(11) Vix;0:m) ¢ Vil ,X;0:m) , 1 ¢ 1 ¢ N .

Proof. We prove the above inequalities simultaneously by induction on m .

Throughout the proof we use the quantities: Lij ‘x:9:m) defined by:

712y L. (x:8:m> = ( A.- A, ) Vix:d:m) - AV (1. ,x:8:m) - A V(1 ,x:8:m) ,
ij i J 1 1 J J

The induction hypothesis is expressed by (13), "14) below
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13 Lij'xzezm; 2 0, for all «x, 9, 1, ) with j ¢ 1

and

LY
4

14y Vix:9:m!@ ¢ V’li,xzezm) , 1 ¢ 1
"13° and (14 are obviouslv true for m = 1. We next complete the induction as
follows.

Step 1: we first show that the following inequalities hold.

vl ,X:9:m:) 2

150 A, - A (v - A .
J a (x) aix)

i - Hix:9) - q(d.V(x:9;m) + ka

(x)

T _ - 3 ) = AcaY)
2 ki( v xa(x) pi(e) pix;a:) Q\e,,V(li,x.a,m)
= A_. o Vel L o dmyr poi8)Vixi8:im))
a'x: i’ Talx) i
~ - - - uix:9:} - WWVrl ,x:9:m:
Aj( v Xl’x) uj(e) uix:a q(8nv lJ,x d9:m
- ( -9- - ‘3 VW(x:d:
k‘fx}vkli(x),lj,x.e,m) uj @' 'Vix;9:m))

i if j = aix:
where ' x: = { ) . .
arx) if j > a(x)

To establish ‘15, we first note that

"16) - XL . (x;8:m) = (X.—-Xx. " (- A V(ix:0:m) + A.V/]1. ,x;9:m; )
J 1J 1 J J J J

- A (- A V(l.,,x:0;m) + A.V(1.,]1.,x:8:m) )
i J 1 J 1)

+ A (- A V(]l.,x;86:m) + A V(1.,1.,x:8:m) )
J 1 J i 1'%

We also note that from (13) we have

(17 A L1 . x:8) 2 0
a(x) 1) "aix)

Next (13} implies that
/ ) — — / — . 3y _ ) [ xpe . i
(18 (v Aa‘x> pJKGJ Hi(x:08) q(el)LiJ<x.9,m; 2 0

which leads to

1 (v - ux:8 - qdY)L, (x:8:m, - A L. ./x:8:m) »
i) aliy)

10
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mo{g: A, ( Vix:8:m) - Vil ,%x;8:m:) - g /A ( Vixid:m) - V1 ,x:9:m;)
J i i J J J

w

W.(8IA, ( Vix:dimi - V(1. ,x:9:m)) - u.(8°'A.( V(x:8;m) - V{1, ,x:8:m/)
1 1 1 J J J

Where the last inequality follows from the induction hypothesis (1l1) and the
fact that u . /9) ¢ p.(9>

J i
Using (16) or (17) in (19) (according to whether a(x) = j or aix) % j: we
obtain (15, after simple operations.

Step 2: we next show that the following inequality holds.

N .
n 7 — { -
(20) (Ai xj) E]_lx]ul\e)V(Ol,x.e.m)

N

. vy N .
3 Ai Zk=lxk“k(6’V(li’ok’x'a‘m) AJ Zkzlxkpk(e V(lj,Ok,x.a.m)

To prove (20) it suffices to note that (10) implies that:

N .
q . . »
(21) Zk=1xk“k Lij(Ok,x.a.m) » 0, for all x, &, i, j
Step 3: the next inequality is established.

2 - ) (8°/ (x:8°:
(22) (Ai xj. Ze,qka /8VV(x:8":m)
Y ki Ze,qya /G)V(li,xza 'm) — AJ Ze,qpe /G)V(lj,xze (m)

To prove (22) it suffices to note that (10) implies that:
(23) Ze,q(e’/e) Lij(x;e';m) » 0, for all x, 8", i, j

Notice that for (23) to hold it essential that the failure rates of the compo-
nents of the system have the same ordering for all 8 (assumption A} and

that the repair rates are independent of 9 .

Step 4: we next complete the induction step for inequalities (10)
We multiply both sides of inequalities (15), (20), (22} by % and add

them. Thus, after some simple algebra we obtain the following inequality.

24 AN - AN DAMem:alx)) 3 AN L, xedimialx)) - A AL xidimr 2 X))
1 J 1 1 J J
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Now observe that the following relations hold due to the inductive hypothesis.

(25) A'x:9:m:aix)) = Vix:8:m+1)

126 A(li,x:azm;a(x)) V(l.,x:;8:m+]1)

Tl

t

:\(lj,xzazm:l(x)) £ V(lj,x:e:m+l)
Therefore, (10 holds for m + 1 also.

Step 5: we complete the induction step for relation (1l1).

Let bix! {a(_li x) 1if 1 = a(x)
e X) = '
a(x) if 1 » alx)

After simple computations in (11% for m + 1 the reader may check that it

suffices to establish

28 (v - A )—u.(e‘; - p(x:8) - q(a‘:‘;(V(li,x:G:m) - Vix;8:m)) 2
. . - 14 . . \
)\b(ﬂ(V(la(x),x,B.m) V"lb(x)’ li,x.e,m,) +
ZN X W, 79Y(V(0, ,x;8:m) ~ V(1,,0,,x;9;m))
k=1"kk S SRAE itk

Ze,q(a’/e)(v(x;e’;m) - V(li.x:e’;m))

Now, (28) holds since, from the inductive hypothesis, the left hand side of
(28) is nonnegative while the right hand side is nonpositive: note that the
first term in the right hand side of (28) is always a difference of the type

covered by the induction hypothesis (14).

Theorem 1. Under the assumptions made, the SFR policy minimizes
stochastically the time the system spends under repair .

Proof. The previous lemma shows that the SFR policy is optimal for all ([ln)

n:1l., Hence the result follows from Propositions 1 and 2.




4. Scheduling Jobs to Minimize The Makespan. The particular problem we

[
}I
vy examine is that considered in Van der Heyden (1981). The state space for this
{l

problem is: S = {x ! X = {X],X2,ee0yXm} , m = 1l,... , x5 € (0,B) } u @,

where state @ is the empty state for the system |, X§ denotes the

. processing rate of the i-th job in the system (waiting or being processed),

and B is some bound. The action set in state x , A(x) , contains all

subsets of x that contain at most p elements.

After uniformization, the functional equations for the finite horizon

problem we consider can be writen as :

"\
- (29) Vix;m+1} = max

aV(x\fx).};m)xJ. + r E/vixufviiml/vi , 1 §men

LT
acA{x) -"je

Lj

with boundarv condition,

1 if x=20
(30) V(x:0) =
* 0 otherwise .

> where the expectation is taken with respect to the random processing rate vy

chosen from the distribution F,

We can readily establish the following,

Theorem 2. The LEPT policy is stochastically optimal.

Proof: To estabilsh the stochastic optimality of the LEPT policy, it suffices
to show that it is optimal in the finite horizon problem defined above for all
Al n . The proof of this is equivalent to establishing inequalities which are
analogous to those in part 3 of Van der Heyden (1981), i.e. inequalities

y (3.2)n » (3.3)g , (3.4)y but with the inequality sign reversed. This can be
done by examining all cases as in Van der Heyden (1981) and following exactly

the same steps but with symmetric arguments.
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